
 Pearson

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Level In Biology Pearson Edexcel (WBIO4) Paper 01 The Natural Environment and Species

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WBI 04_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
$\mathbf{1 (a) (i)}$	A step 1	
	The only correct answer is A	
B is not correct because RUBISCO does not catalyse the conversion of GP to GALP		
C is not correct because RUBISCO does not catalyse the conversion of GALP to glucose		
	D is not correct because RUBISCO does not catalyse the regeneration of RuBP from GALP	

Question Number	Answer	Mark
$\mathbf{1 (a) (i i)}$	B step 2	
The only correct answer is B		
A is not correct because reduced NADP and ATP are not involved carbon fixation		
C is not correct because reduced NADP and ATP are not involved in the conversion of GALP to		
glucose		
D is not correct because reduced NADP and ATP are not involved in the regeneration of RuBP from GALP	(1)	

Question Number	Answer	Mark
$\mathbf{1 (a) (\text { iii) }}$	$\mathbf{C} 3$	
	The only correct answer is C	
	A is not correct because fructose, a glucose and β glucose are all monosaccharides	
	B is not correct because fructose, a glucose and β glucose are all monosaccharides	
	D is not correct because fructose, a glucose and β glucose are all monosaccharides	

Question Number	Answer	Mark
$\mathbf{1 (a) (i v)}$	$\mathbf{C \quad 3}$	
	The only correct answer is C	
B is not correct because all four are polysaccharides		
	D is not correct because all four are polysaccharides	

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 (b) (i)}$	1. (increase in temperature) increases (rate of photosynthesis) $/ \mathrm{eq} ;$	1 ACCEPT converse	
	2. by 75 (a.u.) $/ 1.38 \times / 1.4 \times / 38.46 \% / 38.5 \% ;$		

Question Number	Answer	Additional guidance	Mark
1(b) (ii)	1. idea that carbon dioxide (concentration) is \{the same / low\} ; 2. therefore (the concentration of) carbon dioxide is having the effect ; 3. so there is \{ the same / not more\} \{substrate / carbon dioxide / eq \} for \{ RUBISCO / carbon fixation / Calvin cycle / light-independent reaction / eq \}; 4. idea that the rate is not affected by temperature and light intensity ;	2 ACCEPT carbon dioxide is \{rate limiting / a limiting factor / eq\}	(3)

Question Number	Answer	Additional guidance	Mark
1(b) (iii)	1. \{ value / range \} given for K (greater than 180 and less than 270) ; 2. because temperature is higher (than G) but light intensity is \{ 3 not $6 /$ same / eq \} ; 3. \{ value / range \} given for L (greater than 270 and their value for K) ; 4. because the temperature is higher than H / eq; 5. because the light intensity is higher than K / eq ;	1 ACCEPT answer written in table 2 ACCEPT converse 3 ACCEPT answer written in table 4 ACCEPT converse 5 ACCEPT converse	(4)

Question Number	Answer	Additional guidance	Mark
2(a)	1. idea that \{ there will not be such an increase in flow of blood (to an area) / blood vessel will not become as permeable / blood vessels will not dilate / eq \}	2. idea that there will not be such an increase in \{ white blood cells / macrophages / phagocytes \} (to the area) ;	2 IGNORE lymphocytes, immune cells
3. idea that fewer macrophages to present antigen (for T helper cells) ; 4. idea that without T helper cells activation \{ B cells / T killer cells / eq \} will not be activated ;		(3)	

Question Number	Answer	Additional guidance	Mark
2(b)	1. azothioprine will prevent the increase in T (helper) cells;	1 ACCEPT number of T cells stays the same ACCEPT will decrease if justified by cells dying and not being replaced 2 ACCEPT reproduce IGNORE produce	2. as they will not be able to divide (to form more T helper cells); 3. as they will not be able to replicate the DNA needed for mitosis takes place ;

Question Number	Answer	Additional guidance	Mark
2(c)	1. Thelper cells are needed to activate T killer cells; 2. (T killer cells activated) by cytokines ; 3. there will \{ not be any / be fewer \} T killer cells to release $\{$ enzymes / chemicals / perforins \} ;		
4. cells (of the transplant) will not be destroyed by the \{ enzymes / chemicals / perforins \} / eq ;	4 IGNORE tissues	(3)	

Question Number	Answer	Additional guidance	Mark
3(a)	1. (mRNA) is a copy of the \{ DNA / genetic \} code ; 2. to take this \{ code / information / eq \} \{ out of the nucleus / into the cytoplasm / to the ribosomes \} ; 3. for \{ translation / eq \} ;	3 ACCEPT description e.g. tRNAs line up the amino acids against mRNA, template for protein synthesis	
4 gene / (pre) mRNA \} to code for more than one one peptide ;			

Question Number	Answer	Mark
$\mathbf{3 (b) (\mathbf { i })}$	B hydrogen The only correct answer is B	
	A is not correct because glycosidic bonds bind two monosaccharides together D is not correct because phosphodiester bonds bind a phosphate group of one mononucleotide to a ribose of another mononucleotide	

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (i i)}$	1. idea that tRNA is specific for \{ amino acid / codon on mRNA \} ;	2. to ensure that the \{ sequence of amino acids / primary structure of protein / (poly)peptide \} is correct / eq ;	2 ACCEPT if tryptophan is not inserted then the wrong peptide will be made IGNORE protein otherwise the \{ bonding / folding / structure / function / eq \} of the protein will be incorrect ;

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (\text { iii) }}$	1. reference to \{ degenerate code / code is degenerate \}; 2. idea that (some) amino acids have more than one code ;	2 ACCEPT codon / correspond to more than one base sequence	
3. idea that there will be a different tRNA for each codon (on the mRNA) ;		(2)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (i v)}$	1. reference to stop codons; 2. so tRNAs anticodons (to the stop codons) do not exist $/$ eq ;	1 IGNORE start codon $\mathbf{2}$ ACCEPT tRNAs do not bind to stop codons	

Question Number	Answer	Additional guidance	Mark
*4(a)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence)	QWC emphasis on logical sequence	
1. as temperature increases the rate of development decreases / eq ;	2. reference to enzymes (involved in development) ; development is faster below OST and is lower above OST Piece together		
3. idea that the optimum temperature for these enzymes is below the OST;	4. increase in temperature increases the kinetic energy / eq ; (increase in temperature) increases \{ number of collisions / energy of collisions / eq \} (up to optimum temperature); 6. (increase in temperature) results in vibrations of the R groups / eq ;	7. (increase in temperature) causes bonds to break within the enzyme ; 8. denaturing the enzyme / active site does not bind (so well) with substrate / eq ; 9. idea that temperature could be affecting gene activity ;	8 DO NOT ACCEPT start to denature

| Question
 Number | Answer | | |
| :--- | :--- | :--- | :--- | :--- |
| 4(b)(i) | C \quad C | | |

Question Number	Answer	Mark
4(b)(ii)	C interactions between genotype and the environment	
	The only correct answer is C	
	A is not correct because there are only two sexes	
	B is not correct because crossing over occurs in meiosis	

Question Number	Answer	Additional guidance	Mark
4(c)	1. global warming results in the increase in sand temperature / eq ; 2. idea that numbers could decrease (as rate of development is slower) because more eggs are \{ eaten / collected / eq \} ; 3. idea that (decrease in embryo survival) will reduce number of turtles hatching ; 4. idea of fewer turtles increases risk of predation / eq ; 5. idea that as there is an increased proportion of females more eggs will get laid; 6. idea that a decreased proportion of \{ males / females \} results in \{ less eggs fertilised / difficulty in finding a mate \} ; 7. idea that a decrease in numbers will decrease the genetic diversity, decreasing numbers (further) ; 8. credit an indirect affect of global warming ;	4 ACCEPT increase in predator prey ratio 8 e.g. flooding washes eggs away, effect on food supply	(4)

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (a)}$	bacteria are inside \{ cells / tissues \} / eq ;	ACCEPT invade IGNORE infect	

Question Number	Answer	Additional guidance	Mark
*5(b)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. idea of culturing M. tuberculosis with \{ agar / broth \} ; 2. idea that different antibiotics are used ; 3. in a number of different combinations ; 4. credit mode of applying antibiotic; 5. idea of incubating bacteria with antibiotic for a period of time ; 6. credit reference to using \{ aseptic technique / named aseptic technique \} ; 7. credit appropriate description of how results are assessed to determine most suitable combination ;	QWC emphasis on clarity of expression 1 IGNORE bacteria put in petri dish 4 e.g. soaked filter paper disc on agar, added to broth, incorporated into agar 5 DO NOT ACCEPT stated time period of less than 12 hours 6 e.g. work near a Bunsen burner 7 e.g. most suitable combination has largest zone of inhibition, most suitable combination has the least turbidity	

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (c) (i)}$	1. $100 \times 3 \times 8 / 2400 ;$ 2. Hero rat can analyse 2370 more samples;		

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (c) (\text { ii) }}$	1. 80% of $150=120 ;$ 2. 58% of $150=87 ;$ 3. 33 more people identified;		
	3 ACCEPT $1.38 \times / 1.4 \times / 37.9 \%$		

Question Number	Answer	Additional guidance	Mark
5(c)(iii)	1. body temperature of rat is not suitable / eq ;		
	2. rat macrophages can destroy M. tuberculosis / eq ;		(1)

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (a)}$	group of \{ organisms / eq \} that can \{ reproduce / eq \} to produce fertile offspring / eq ;	IGNORE viable	

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (b) (i)}$	1. to reduce inbreeding / eq ; 2. idea of maintaining \{ genetic diversity / size of gene pool / eq \} ;	NB accept the converse in the correct context	
3. ensuring the giant panda has ability to adapt to change ; 4. to identify the \{ fertile / suitable / eq \} males / eq ;	3 ACCEPT prevent inheritance of a defect / e.g. of a change		(2)

Question Number	Answer	Additional guidance	Mark
6(b)(ii)	1. DNA used from cub, mother and all the possible fathers; 2. credit named source of DNA ; 3. credit detail of gel electrophoresis ; 4. credit method of visualising DNA ; 5. idea of matching the (DNA) bands ;	2 e.g. blood, skin, fur, saliva, sperm (from male) e.g. restriction enzymes /	
loading onto gel / applying current			
4 e.g. southern blotting /			
staining			

\hline\end{array}\right.\)

Question Number	Answer	Additional guidance	Mark
6(b)(iii)	In vitro method: 1. idea of observing sperm under a microscope ; 2. idea of looking at structure / number (of sperm) ; 3. idea of looking at sperm mobility ; 4. idea of \{ observing fertilisation taking place / looking at viability of embryo / eq \}; 5. idea of comparing frozen sperm to fresh sperm (from the same male) ; 6. idea of using \{ proteomics / DNA analysis / eq \} ; OR In vivo method: 7. credit detail of A.I. ; 8. idea of looking at pregnancy success rate ; 9. idea of looking at full term pregnancy rate ; 10.idea of looking at health of cubs ; 11. idea of comparing frozen sperm to fresh sperm (from the same male) ; 12.idea of using \{ proteomics / DNA analysis / eq \} ;	7 e.g. inject sperm into female, use of fertility hormones	(4)

Question Number	Answer	Mark
$\mathbf{6 (c)}$	C primers	
The only correct answer is C		
A is not correct because DNA polymerase is not DNA-specific		
B is not correct because mononucleotides are present in all DNA		
	D is not correct because restriction enzymes are base sequence specific	

Question Number	Answer	Additional guidance	Mark
7(a)	1. idea that the baby needs both alleles to be recessive to have the disorder ; 2. therefore has to inherit a recessive allele from each parent ; 3. therefore each parent must be \{ heterozygous / carriers \} ;	DO NOT ACCEPT gene for allele 1 ACCEPT homozygous recessive labelled genotype in a genetic diagram 2 'inherits two recessive alleles one from each parent and gets the disease' = 2 marks ACCEPT from a genetic diagram that has labelled the parent's alleles 3 ACCEPT description of heterozygosity in terms of different alleles from a genetic diagram that has labelled the parent's alleles	(3)

Question Number	Answer	Additional guidance	Mark
7(b)	SI MI LARITY: 1. both result in weakened immune system / eq ; OR both affect T helper cells ; DI FFERENCE: 2. adenosine deaminase deficiency \{ caused by a mutation / is a genetic condition / is inherited / eq \} but HIV caused by a \{ virus / infection \}; OR \{ both B and T cells / B cells \} affected in adenosine deaminase deficiency but \{ only the T helper cells / no B cells (directly) \} affected in HIV ;	DO NOT piece together 1 IGNORE affect / attack	

Question Number	Answer	Additional guidance	Mark
7(c)(i)	1. $\{$ attach / target / eq \} (specific) cells; 2. are hollow (to carry gene) / eq ;	1 ACCEPT bone marrow cells / lymphocytes	
3. can enter \{ itself / nucleic acid / DNA / RNA /eq \} into (host) cells / eq ;		(2)	

Question Number	Answer	Additional guidance	Mark
7(c)(ii)	1. liposome can \{ fuse with / eq \} (target cell) membrane ;	2. because the phospholipid layer is fluid / eq ;	
3. idea that non polar (fatty acid) tails prevent \{ large / polar \} DNA from escaping ;	4. idea that DNA can be carried because it is a \{ micelle / non polar (fatty acid) tails face each other / eq \} ; 5. idea that the polar heads make the liposome soluble in \{ blood / cytoplasm / water \};		

Question Number	Answer	Additional guidance	Mark
8(a)	1. idea that the tree roots will hold the sand together ; 2. idea that decomposition (of trees) will add \{ humus / organic matter / mineral ions / eq \} to the sand ; 3. idea that improved soil (from growing trees) will hold more water ;		
4. idea that \{ improved soil / more water in soil / humus $/$ eq \} will encourage growth of (other) plants ;		(2)	

Question Number	Answer	Additional guidance	Mark
8(b)	1. idea that biodiversity is \{ species richness (and genetic diversity) / the number of different species in a habitat \} ; 2. idea that fast-growing trees would \{ outcompete / outgrow / choke / eq \} the existing plants ; 3. (competition for) \{ light / water / mineral ions / space \} ; 4. causing a decrease in the number of \{ species / eq \} of \{ plants / trees \} ; 5. idea that the number of animal \{ species / eq \} in the original forests would drop ; 6. (drop) due to loss of $\{$ food / shelter / habitat / eq \} / eq ;	4 ACCEPT types / different species die out 5 ACCEPT types / different species die out	

Question Number	Answer	Additional guidance	Mark
8(c)	1. idea that fast-growing trees will \{ have a greater GPP / be producing biomass faster / have a greater NPP \} ; 2. idea that fast-growing trees will be photosynthesising faster ; 3. and therefore (fast-growing trees) removing more carbon dioxide from the atmosphere / eq ; 4. idea that if the removal of carbon dioxide is greater than the rate carbon dioxide being added into the atmosphere then global warming will be reduced ; 5. idea that there is less carbon dioxide to trap the \{ infra red radiation / heat energy / eq \} ; 6. idea that more carbon is locked up in \{ larger/ fastgrowing \} trees ;	4 ACCEPT decrease net increase 5 ACCEPT absorb	(4)

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (d) (i)}$	scientific \{ conferences / publications / journals \} / peer review ;	ACCEPT idea that these studies should be repeated IGNORE internet	

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (d) (i i)}$	1. idea of insufficient evidence (for planting of the trees) ; 2. idea that some scientists are more interested in global warming than wildlife ; 3. idea that some scientists want to preserve the natural wildlife ;	4. idea that politicians are trying to win votes ; 5. idea that \{ economists / government / eq \} \{ are concerned about money / want to develop the land / eq \} ;	6. idea that farmers want the land for crops (not forests) ; 7. idea that not everyone agrees that global warming is a problem ;

